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Abstract: Wearable sensors have the potential to facilitate remote monitoring for patients recovering
from knee replacement surgery. Using IMU sensors attached to the patients’ leg, knee flexion can be
monitored while the patients are recovering in their home environment. Ideally, these flexion angle
measurements will have an accuracy and repeatability at least on par with current clinical standards.
To validate the clinical accuracy of a two-sensor IMU system, knee flexion angles were measured in
eight subjects post-TKA and compared with other in-clinic angle measurement techniques. These
sensors are aligned to the patients’ anatomy by taking a pose resting their operated leg on a box;
an initial goniometer measurement defines the patients’ knee flexion while taking that pose. The
repeatability and accuracy of the system was subsequently evaluated by comparing knee flexion
angles against goniometer readings and markerless optical motion capture data. The alignment pose
was repeatable with a mean absolute error of 1.6 degrees. The sensor accuracy through the range of
motion had a mean absolute error of 2.6 degrees. In conclusion, the presented sensor system facilitates
a repeatable and accurate measurement of the knee flexion, holding the potential for effective remote
monitoring of patients recovering from knee replacement surgery.

Keywords: knee arthroplasty; wearable sensors; IMU sensors; flexion measurements; accuracy

1. Introduction

Patients recovering from knee replacement surgery are often monitored by various
stakeholders (physiotherapists, surgeons, nurse practitioners, etc.) who each get a different
snapshot of the state of recovery at different time intervals. However, the overarching
view of the temporal progression of recovery is often missing, which limits the granularity
of the feedback to both the surgeon and the physiotherapist. More frequent feedback
may be necessary to understand the true impact of their clinical/surgical decisions and
improve the currently observed, suboptimal patient-reported outcomes in knee arthroplasty
surgery [1,2].

Knee range of motion (ROM) is an important parameter in evaluating outcomes and
recovery after total knee arthroplasty (TKA). In standard practice, knee ROM is assessed
by clinical practitioners, often with the patient in a supine position. The extremes of ter-
minal extension and maximum flexion are of primary clinical relevance, both active (i.e.,
driven by the patient’s muscular ability [3]) and passive (i.e., under external force by a
physiotherapist [4]). The accuracy of the knee flexion measurements directly affects these
assessments. A range of angle measurement methods have been reported, including the
use of radiographic goniometry, marker-based optical motion capture, visual estimation,
hand goniometry (short and long arm goniometer), videography [5] and digital goniome-
ters [3]. Radiography and marker-based optical motion capture are considered the most
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accurate kinematic measurement tools, though both are seldom used in clinical practice.
Radiation exposure for the purpose of goniometry is often considered excessive and the
instrumentation and data processing associated with marker motion capture results in
significant overhead costs. The alternative methods have a high interrater and intrarater
reliability but vary in accuracy ranging from a 14◦ minimum significant difference for
short arm goniometry to 6◦ when using a digital goniometer [3]. Regardless of which of
the aforementioned methods is used in clinical practice, the measurements remain largely
constrained to clinical visits at preset time intervals and do not facilitate continuous, remote
patient monitoring.

Recent advances in wearable sensors provide an opportunity for (continuous) remote
monitoring of patients’ knee flexion by the care team rather than discontinuous, momentary
assessments by individual stakeholders [6]. Using two inertial measurement units (IMUs)
placed above and below the knee, these sensors can measure knee flexion angles both
at home and in a clinic. These angles can be subsequently uploaded to the cloud via a
smartphone for clinicians to review. The use of these sensor systems holds the potential to
measure knee metrics during activities of daily living as well as to track and guide patients’
home exercise physiotherapy program during recovery. However, accurate measurement
of the knee flexion angle by these skin-mounted sensors is essential to achieve the above
goals [7].

Accurate measurement of knee joint angles using IMUs requires proper sensor-to-leg
registration, where the individual sensor axes are aligned with the underlying mechanical
axes that define the knee flexion angle (i.e., the axis from the hip to the knee and the knee to
the ankle) [8]. Inaccurate registration of the sensors to the leg’s mechanical axes will intro-
duce bias into the reported knee joint angle. This link potentially needs to be re-established
every time sensors are re-attached to the patient’s leg, for example following an overnight
recharging cycle. Furthermore, if sensors are intended for remote monitoring, patients
should be able to perform sensor-to-leg registration without a clinician’s supervision at
any point during their recovery. Several sensor-to-leg registration processes are in use
today, though these methods impose challenges when applied to (post-)TKA patients. In
particular, registration methods that require movement of the leg have reduced accuracy
when applied to obese patients due to skin motion relative to the bone [3,9]. Registration
methods that involve the subject assuming a straight leg pose [3,10] may not be effective
in subjects post-TKA, whose knees cannot necessarily achieve full extension [11]. Finally,
registration methods that utilize measurements of knee angles by some external tool (e.g., a
goniometer or smartphone) may be difficult for patients to use at home or without clinician
assistance or supervision. It is therefore concluded that new sensor-to-leg registration
methods shall be developed and tested to improve the accuracy of IMU-based knee angle
measuring sensors in a post-TKA population.

In this pilot study, the accuracy and repeatability of knee angle measurements made
by the MotionSense system is evaluated (EnMovi, Glasgow, UK). This system measures
knee angles using two IMU sensors placed above and below the knee joint on the lateral
aspect of the thigh and shank respectively. The MotionSense sensors are registered to the
leg using a novel technique whereby the knee angle reported by the sensors is set to a
known value as measured by a goniometer while the subject assumes a consistent static
pose. The following aspects of the sensor system are assessed in this paper:

1. How consistent and repeatable is the sensor-to-leg registration process? This question
is applied to the two components of the leg registration process:

a. How consistent are the goniometer measurements made by the clinician?
b. How consistent is the static pose taken by the subject during the sensor-to-leg

registration process?

2. How accurate are the sensor angles through a wide range of motion? This will be
tested by comparing sensor angle measurements with goniometer angles, as well as
angles from a markerless optical motion capture system.
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Focusing on TKA recovery applications and taking into account the abovementioned
variability of the current standard of care, the desired sensor accuracy threshold is 5 degrees.

2. Materials and Methods
2.1. MotionSense Platform

The MotionSense wearable sensors consist of two sensor nodes that communicate
via Bluetooth with a mobile app installed on the patient’s phone. Each sensor includes a
six degree of freedom IMU sensor sampled at 50 Hz and subsequently processed through
Madgwick filtering to calculate the pitch and roll angle for each sensor node. This results in
a static accuracy measured on a mechanical hinge of 0.1 degree (Appendix A). These sensors
are attached above and below the knee joint on the lateral aspect of the thigh and shank,
respectively, using a dual patch system. The first, weekly patch remains in contact with the
skin for a longer duration. The second patch adheres the sensors to the weekly patch and is
removed daily to allow overnight sensor charging. After re-applying the sensors to the leg
each morning, the sensor orientation relative to the patient anatomy is unknown (Figure 1).
The true knee flexion angle, αKnee, is defined as the angle between the mechanical axes
of tibia and femur, mT with respect to mF (as shown in Figure 1). The relative orientation
of these mechanical axes cannot be measured directly but is approximated by the angle
read by the sensors attached to the respective segments (αFemur with respect to αTibia). This
approximation is reflected by the sensor misalignment angles, δF and δT, representing
the difference between the mechanical axes of the underlying anatomy and the sensor
axes. This leaves the following relationship between the true knee flexion angle and the
sensor readings:

αKnee = (αFemur−δF)−(αTibia−δT) (1)

or
αKnee = αFemur−αTibia−δKnee (2)

Since the design goal of the device is to accurately evaluate the knee angle, there is
no need to identify δF and δT individually; instead, the combined alignment error δKnee
is determined. In the remainder of this paper, the latter is referred to as the offset angle.
In practice, this offset is estimated by the device while the patient assumes a pose, resting
their operated leg on a rigid box with a fixed height of 10 cm. While striking this pose,
the sensors calculate the offset between their relative orientation (αFemur−αTibia) and the
knee flexion angle measured by the physiotherapist during the initial onboarding visit
(αPT). Subsequently, this offset angle (δKnee) is stored locally on the sensors to allow for an
accurate evaluation of the knee flexion angle throughout the day (Figure 2). The sensors
automatically detect when they are either intentionally or accidentally removed from the
leg, after which the above procedure must be repeated by the patient to obtain an updated
offset angle.

2.2. Clinical Design

During an IRB approved study, a total of 8 participants were enrolled in a longitudinal
study where patients used the MotionSense system and accompanying mobile app for
10 consecutive days. All participants had recently undergone knee replacement surgery
using the Triathlon CR system implanted with a robotic assisted arm (Stryker, Kalamazoo,
MI, USA). The patients had an average time since surgery of 27 days (see Table 1) and
were demographically representative for the population undergoing TKA surgery (BMI
up to 35, mean age of 63) [12]. Only patients that had undergone unilateral TKA within
the past 3 months and owned a smartphone were eligible for enrolment in the study. In
addition, patients with major complications (e.g., infections, instability) were not eligible
for enrollment nor were major complications encountered for the participants in the study.
An overview of the patients enrolled in the study is shown in Figure 3.
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Figure 1. Position of thigh and shank sensor relative to the respective mechanical axes after sensor (re-)application is
unknown resulting in varying offset angles δF and δT.

The patients participated in two in-clinic sessions at least 10 days apart during which
the patients were asked to repeatedly rest their operated leg on the box. In between repeats,
the sensors were not removed from the leg, although the patients were asked to walk
around the facility, and the offset angles from repeated poses were compared. In the
remainder of this paper, the first 5 repeats per participant have been considered for analysis.
In addition, a sub-group of 5 patients performed two physiotherapy exercises: during the
initial visit, patients performed 10 repeats of a standing knee bend, while during the return
visit, they performed 10 standing knee bends and 10 long arc quads (Figure 4).
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Figure 2. Establishing a sensor offset angle to facilitate accurate knee flexion measurements by having the patient stand on
a box. Initially a physiotherapist measures the associated knee flexion angle. This angle while standing on a box is used to
determine a daily sensor offset angle which corrects the sensor readings during activities of daily living or guided exercises.

Table 1. General demographic data for participating total knee patients.

# Gender Age
(year)

Weight
(kg)

Height
(cm)

BMI
(kg/m2)

Days Since Surgery at
Onboarding

Video
Analysis

1 Female 66 65 165 23.9 42 N
2 Female 61 93 163 35.0 21 N
3 Male 58 116 193 31.1 42 Y
4 Male 56 104 175 34.0 23 Y
5 Female 67 64 155 26.6 21 Y
6 Male 68 102 182 30.8 21 Y
7 Female 62 72 163 27.1 21 Y
8 Female 67 70 159 27.7 26 N
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Figure 3. Summary view of sensors mounted on participants’ legs during the onboarding visit.

Figure 4. Schematic representation of: (a) long arc quad exercises and (b) standing knee bends.

2.3. Video Motion Capture Measurements

To evaluate the accuracy and precision of the IMU-derived knee flexion measurements
throughout the range of motion, the wearable sensor measurements were compared to
angles from video motion capture during a series of exercises. A sagittal plane video
(1920 × 1080 pixels, 60 fps) of the sensor-instrumented leg was recorded using a Nikon Z50
camera with a 16–50 mm lens mounted on a tripod. Subsequently, the exercise videos were
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processed to automatically detect the location of the patient’s hip, knee and ankle joints
using the OpenPose library (version 1.6, Carnegie Mellon University, Pittsburgh, United
States of America). OpenPose is a machine learning pose estimation library developed
to detect human body key points in videos [13] (see Figure 5 for examples). OpenPose
has been shown to have an almost complete agreement with joint angles obtained with
a three-dimensional motion analysis system [14]. In addition, an internal validation was
performed against traditional surface-marker-based motion capture analyses, showing
excellent agreement between the OpenPose knee flexion angles and those measured using
a surface-marker-based system (see Appendix B). This internal validation additionally
indicated that OpenPose results can be sensitive to camera angle, body shape and the color
and looseness of a subject’s clothing. As a result, the OpenPose results for all subjects
were visually inspected for OpenPose sensitivity artefacts. Subjects were removed from
the following analyses if it was apparent that OpenPose did not correctly identify the joint
centers of interest.

Figure 5. Example time-aligned timeseries of sensor and video knee angle flexion measurements (bottom panel). Joint
locations estimated by the video system are shown for three example video frames (top panel).

Knee angles were calculated for each video frame as the internal angle between the hip-
to-knee and ankle-to-knee vectors using custom Python 3.8 scripts. The video- and sensor-
reported knee angles associated with the same exercise were subsequently resampled to a
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common sampling period using spline interpolation, corresponding to the video frame rate
(i.e., 60 fps). In the next step, the resulting timeseries were synchronized by applying the
sample offset that maximizes the covariance between video and sensor measurements. Any
potential offset for the OpenPose data was then corrected for by matching the goniometer
measurement while standing on the box, analogous to the process described earlier for
the wearable sensors. The remaining bias between both timeseries can thus be seen as
the dynamic accuracy through the range of motion of the wearable sensors relative to our
validated video motion capture method. This bias is calculated from the mean deviation
between time-aligned sensor and video knee angle measurements (sensor–video) within
five-degree intervals. The bias between sensor and video knee angles was also assessed by
fitting a linear regression model with aligned sensor measurements as a dependent variable
and video angle measurements as the independent variable. To allow for correction of
mean bias throughout the range of motion, the observed variation of bias was also modeled
as a function of the sensor knee flexion angles. Because of the observed bias variation in
different sections of the range of motion, a continuous piecewise linear function model
was fitted. All data were processed using Python 3.8 including the pandas (v1.1.0) [15,16]
framework for data handling and relying on scikit-learn (v0.23.1) [17] machine learning
library for linear regression and the pwlf library (v2.0.4) [18] for continuous piecewise
linear function model.

3. Results
3.1. Repeatability of Goniometer Measurements on Box

Each patient’s knee flexion angle while standing on the box was measured both during
the onboarding and final visit in the clinic. During these measurements, the physiotherapist
was blinded to the readings from the previous visit. The obtained knee flexion angles
across all patients while taking repeats ranged between 50 and 74 degrees (Table 2). The
mean absolute difference between the flexion angle measured during both visits was 2.6
degrees, with a standard deviation of 2.5 degrees.

Table 2. Difference between goniometer measurements at subsequent clinic visits for the participating patients.

Patient # 1 2 3 4 5 6 7 8

Goniometer Angle Initial Visit [degree] 60 65 60 58 59 60 74 60
Goniometer Angle Final Visit [degree] 62 63 62 50 56 56 74 60

3.2. Repeatability of Patient Pose on Box

Over both sessions, the patients performed five repeats resting their operated leg on
the box (n). As the sensors remained on the patients’ legs during repeats, the resulting
offset angles can be compared across repeats within a session to evaluate the variability
in the patient assuming the pose. This variability is quantitatively assessed by removing
the mean offset angle from the readings during a session. Overall, the mean absolute
variability is 1.6 degrees with a standard deviation of 1.5 degrees (Table 3; Figure 6).

Table 3. Repeatability of offset angle while patient is taking a pose on the box.

Patient # 1 2 3 4 5 6 7 8 All

Number of Repeats (n) 5 5 5 5 5 5 5 4 39
Mean Absolute Variability (degree) 0.6 2.0 2.3 0.7 3.2 0.5 2.9 0.3 1.6

Max Variability (degree) 1.4 3.5 5.2 1.4 5.5 0.7 4.8 0.5 5.5



J. Funct. Morphol. Kinesiol. 2021, 6, 60 9 of 17

Figure 6. Box and whisker plot showing the distribution of the absolute offset angles over various
repeats for different study participants and the overall results for all test data (in red). The upper
and lower limit for each of the boxes represent the 25th and 75th percentiles of the observations for a
given dataset, whereas the extreme values are bound by the whiskers.

3.3. Linearity of Sensor Reading through Range of Motion

A total of 22 exercise sessions were logged for five patients that were matched with
OpenPose video measurement timeseries. Patients 1, 2 and 8 were removed from this
portion of the analyses since OpenPose failed to accurately identify their joint centers
for a significant portion of the video. These exercises included 16 standing knee bends
and four long arc quads (Table 4). The covariance criterion indicated good alignment
between sensor and video knee flexion angle timeseries for all of the 22 logged sessions
(e.g., Figure 5). The fitted linear models were statistically significant (p < 0.001) and with
very good model fit (R2 > 0.99, example shown in Figure 7) for all individual exercise
sessions as well as overall. The fitted slope values were all larger than, and very close
to one (1.00–1.13 range), indicating that there is a good linear relationship between the
sensor and video measurements on average. The 5-degree binned bias variation shown
in Figure 8a indicates that measured sensor knee flexion angles have low bias between 30
and 70 degrees flexion, while slightly underestimating knee flexion angles above this range
and slightly overestimating below 30 degree flexion. The 95-percentile range across the
5-degree bins ranged from 5.21 degrees for the 0 to 5-degree flexion bin to 15.28 degrees for
the 105 to 110-degree flexion bin (see also Table 5).

3.4. Correction of Bias Non-Linearity

To allow for correction of mean bias at the extremes of the range of movement, the
observed variation of bias was modeled as a function of the sensor knee flexion angles.
Because of the observed bias variation in different sections of the range of motion, a
continuous piecewise linear function model was fitted. The central point of the five-
degree bins was used as the dependent variable (i.e., 0.5, 1.5, etc.) and the corresponding
mean bias for each exercise session as the independent variable. This model was fitted
with a fixed target number of three segments (i.e., 2 breakpoints) but without explicit
breakpoint locations. This was chosen to preserve the low bias in the middle range, while
compensating for the underestimation and overestimation at the extremes of the range of
motion. The piecewise model fitted breakpoints at 15 and 47 degrees of flexion with an
R2 = 0.36 (Table 6). Correcting the sensor angles with this model’s prediction (i.e., observed
sensor–predicted bias) resulted in a reduction of the bias at the extremes of the ROM
(Figure 8b and Table 5), as well as a reduction of the overall mean bias from −0.62 degree
(SD 3.75) to −0.18 degree (SD 3.17).
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Table 4. Bias statistics for each data logging/exercise session. Duration is the length of time aligned between video and
sensor measurements.

Patient
Visit

1: First
2: Final

Exercise Duration [sec]
Bias [degree]

Mean Mae Std

3

2 Long Arc Quads 57.17 1.80 1.26 1.91
2 Long Arc Quads 42.48 0.41 1.14 1.91
2 Standing Knee Bends 133.37 0.16 2.57 3.01
2 Standing Knee Bends 72.96 −0.99 1.93 2.40
2 Standing Knee Bends 96.13 1.58 2.40 2.87
2 Standing Knee Bends 92.78 −1.43 1.68 2.29

4

2 Long Arc Quads 117.15 1.56 1.86 2.75
2 Standing Knee Bends 80.73 −3.55 3.46 4.15
2 Standing Knee Bends 64.36 −3.50 2.96 3.62
2 Standing Knee Bends 87.10 −3.04 3.98 4.65
2 Standing Knee Bends 106.99 −4.73 2.96 3.70
1 Standing Knee Bends 64.18 −1.98 3.22 3.85

5

2 Long Arc Quads 108.17 1.49 1.39 1.87
2 Standing Knee Bends 111.28 −0.97 3.40 3.87
1 Standing Knee Bends 29.25 −0.87 2.40 3.22
1 Standing Knee Bends 132.82 −0.79 1.82 2.27

6
2 Standing Knee Bends 150.40 −0.48 4.41 4.91
2 Standing Knee Bends 174.92 −0.37 3.33 4.07
2 Standing Knee Bends 185.19 −0.05 2.29 2.84

7 1 Standing Knee Bends 157.39 0.75 2.35 2.79

Figure 7. Scatter plot between sensor- and video-measured knee flexion angles for all sessions. Black
line corresponds to the fitted linear regression with sensor measurements as an independent variable
(x) and video angle measurements as the dependent (y) variable. The diagonal dashed line (1:1 line)
indicates the equality of the two measurements.
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Figure 8. Sensor knee flexion angle bias in 5-degree bins, with 95-percentile range for: (a) uncorrected and (b) corrected
measurements. Also included is the fitted linear piecewise model with breakpoints (line with dotted markers in part b).

Table 5. Bias statistics in 5-degree bins, including after applying the modeled linear piecewise correction.

Knee Flexion
(degree)

Uncorrected Bias Linear Piecewise Corrected Bias

Mean Mae Std Mean Mae Std

0–5 3.98 4.95 1.61 0.74 1.29 1.61
5–10 2.45 1.78 1.45 0.12 1.27 1.57
10–15 2.51 2.80 2.65 1.90 2.40 2.64
15–20 0.84 2.17 3.01 0.67 2.28 3.03
20–25 0.34 2.43 3.23 −0.06 2.51 3.22
25–30 1.12 2.91 3.30 0.54 2.61 3.31
30–35 0.48 2.61 2.87 0.03 2.21 2.87
35–40 0.21 2.58 2.97 0.02 2.23 2.97
40–45 0.00 2.55 2.99 0.07 2.24 3.00
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Table 5. Cont.

Knee Flexion
(degree)

Uncorrected Bias Linear Piecewise Corrected Bias

Mean Mae Std Mean Mae Std

45–50 −0.16 2.58 3.08 0.17 2.24 3.08
50–55 −0.21 2.48 3.09 0.39 2.29 3.09
55–60 −0.31 2.20 2.71 0.54 2.00 2.71
60–65 −0.42 2.13 2.97 0.68 2.21 2.97
65–70 −0.61 1.90 2.68 0.76 2.03 2.68
70–75 −1.44 2.11 2.55 0.18 1.92 2.55
75–80 −2.03 2.52 2.76 −0.14 2.15 2.76
80–85 −3.75 3.74 2.74 −1.58 2.64 2.72
85–90 −3.20 3.14 2.72 −0.83 2.35 2.74
90–95 −2.49 2.49 2.99 0.14 2.29 2.97

95–100 −2.73 2.61 3.39 0.19 2.75 3.41
100–105 −2.07 2.28 3.79 1.12 3.25 3.81
105–110 −3.95 3.12 4.10 −0.55 3.29 4.08

Overall Mean −0.52 2.64 0.23 2.29

Table 6. Parameters of fitted piecewise regression model.

Sensor Knee Angle Range Intercept Slope

0◦–15◦ 4.43 −0.23
15◦–47◦ 0.51 −0.01

47◦–105◦ 2.71 −0.06

4. Discussion

In this study, various aspects contributing to the accuracy and repeatability of an
IMU-based wearable system in measuring knee flexion have been evaluated. Based on
the data collected from a total of eight patients that recently underwent TKA surgery, the
accuracy of the wearable system for measuring knee flexion was found to be below the
desired five-degree threshold.

Because of limitations in currently available sensor-to-leg registration methods, we
used a registration procedure where the reported sensor angles are corrected to a previously
measured value while patients rest their operated leg on a box with known height. In
this study, three aspects of the system accuracy linked to this registration method were
assessed. First, the consistency of goniometer measurements underlying the sensor-to-leg
registration method was evaluated. We found a mean absolute difference of 2.6 degrees
in the angle measurements made by two clinicians several weeks apart while the patient
takes a standardized static pose. Second, we evaluated the patients’ ability to repeatably
take this static pose. We found that the knee angle while taking this pose had a mean
absolute variability of 1.6 degrees. Third, the sensor accuracy through the range of motion
was established by comparing the sensor readings to a video-analysis based method, after
removing the overall bias. This comparison resulted in a mean absolute error through the
range of motion of 2.6 degrees, with higher values observed in deep flexion and towards
terminal extension. It was shown that this error can be corrected using a piecewise linear
correction method to yield a mean absolute error through the range of motion of 2.3 degrees.

Evaluating a patient’s range of motion and the associated absolute knee flexion angles
is critical for monitoring patients’ recovery progress as it has the potential to impact gait
and function [19]. Current clinical practice provides limited opportunity to remotely
monitor a patient’s range of motion; instead, the flexion range is primarily assessed during
in-clinic visits with their physiotherapist or surgeon. The presented sensor system provides
the opportunity to remotely monitor a patient’s range of motion on a daily basis while
patients recover at home and carry out normal daily activities. Although beyond the
scope of this paper, it is assumed that the associated clinical benefits are twofold. First,
this sensor facilitates direct feedback to the patient during their home exercises. This can
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drive patient compliance with their home exercise program and assure proper execution
of the exercises [20]. Second, the higher granularity of range of motion measurements
can facilitate early detection of patients with suboptimal recovery (e.g., stiffness). This
can drive early, conservative treatment changes over surgical interventions. In order to
deliver on this promise, the sensor system needs to achieve the necessary accuracy as the
data needs to be clinically relevant to the care team. The main aspects contributing to this
system’s accuracy on a daily basis are the repeatability when the patients take the static
pose during sensor-to-leg registration and the dynamic accuracy of the sensors through the
range of motion. Our results indicated that this combined mean absolute error averages
4.2 degrees without applying corrections. This compares well to current clinical practice,
where goniometer measurements or visual assessments remain the standard of care. For
example, work by Edwards et al. [21] indicates that visual assessments can be off by over
5 degrees in 45% of cases, whereas goniometer measurements can be off by more than
5 degrees in as much as 22% of cases [3]. Based on the promising results from this pilot
study, using the presented system to accurately monitor patients’ knee flexion angle in a
remote setting will be explored in future work.

Previous studies focusing on the accuracy of IMU-based knee flexion measurement
systems are often limited to the relative range of motion or based on assumptions around
the patient’s ability to fully extend their leg or position sensors accurately. These studies
often overlook the offset or systematic bias that could be introduced during the sensor-to-
leg registration process studied in this paper and associated misalignment of the sensors
relative to the patient’s anatomy [22,23]. This issue has important clinical limitations,
particularly in a patient population recovering from knee replacement surgery or ante-
rior cruciate reconstruction surgery [24] where a lack of full extension during recovery
often leads to re-operation [25,26]. Our research is therefore unique in that it recognizes
the dependency of knee flexion measurements on the datum position and considers the
limitations of the targeted patient population. Through the presented study, our method
of resting the operated leg on a rigid box has demonstrated to be feasible and repeatable.
Previous research has shown that the knee flexion angles observed in our work while
resting on the box (ranging between 58 and 74-degree flexion) are achievable from the early
post-operative phase and throughout the recovery for TKA patients [27]. Therefore, the
position on the box with fixed height can be seen as a reliable alternative for TKA patients
compared to the neutral, straight standing pose often used in biomechanical research with
healthy individuals [3].

The assessment of the dynamic accuracy through the range of motion revealed a
small positive bias that was systematically observed at the lower end of the range of
motion, while a small negative bias was observed at the higher end. This was driven
by a slightly positive slope between our sensor readings and the video motion capture
measurements. Should we have selected one extreme of the range of motion as the datum
position, the maximum error would have been larger at the other end of the range of
motion. Instead, the box calibration pose is based on a flexion angle near the middle of the
range of motion, thus keeping the maximum errors limited at these extreme ends which are
often of primary interest to monitor patient recovery [10]. Indeed, the mean error through
the range of motion was small at −0.52 degree. To compensate for the errors observed
near the extremes of the range of motion, a correction method was evaluated that builds
on a continuous piecewise model. This correction resulted in a limited improvement in
accuracy of 0.3 degree, which likely holds limited clinical relevance.

This study has several noteworthy limitations. First, the dependency on the accuracy
of the single goniometer measurement performed during the onboarding process is a
limitation of our approach. While the accuracy of the goniometer remains suboptimal, we
have demonstrated that such single measurements in the mid-flexion range show good
repeatability. In addition, this potential error remains constant through the patient’s recov-
ery pathway, thus providing relative validity to day-to-day within-patient comparisons
to track a patient’s recovery. The current algorithm is also limited by relying on a hinge
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model for the knee while assuming that the sensors are positioned in the sagittal plane by
instructing the patients to apply the sensors on the lateral aspect of the thigh and shank
respectively. In the literature, the flexion axis is often determined experimentally during
a calibration maneuver, hence correcting for potential sensor misplacement errors [3,28].
The presented dynamic accuracy through the range of motion is however in line with
results published in the literature, notwithstanding these published algorithms have often
been validated with an optimized patient population (young adults). This suggests limited
room for improvement by considering such corrections and provides confidence in the
presented approach. Finally, this study is limited by the relatively small patient population
and small number of involved clinicians. While the population used in this study was
intended to be representative of the eventual end users for the IMU system, the inclusion of
only eight subjects may not capture certain trends in sub-populations or edge cases where
the accuracy may be lower. Additionally, the use of a few well-trained clinicians to perform
the test likely yields best case results. When implemented in clinical practice, the accuracy
of the methods presented here would be subject to human error, which may be more likely
in less well-trained practitioners.

5. Conclusions

In conclusion, this paper has evaluated the accuracy of a skin-worn, wearable sensor
system in measuring knee flexion. The system consists of two IMU sensors attached to the
lower limb above and below the knee using a dual-patch system. During onboarding, the
patient rests their operated leg on a box with a fixed height while the corresponding knee
flexion angle is measured by a trained physiotherapist. Subsequently, the patient repeats
this position after every sensor re-application (at home). This process has been shown to be
repeatable, with a minimal mean absolute error of 1.6 degrees. The additional sensor error
obtained as the patient moves through the range of motion is limited to a mean absolute
error of 2.6 degrees. The combined error of 4.2 degrees allows for a clinically meaningful
interpretation of the measurements, facilitating effective remote patient monitoring and
potential tele-rehabilitation on a larger cohort of patients.
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Appendix A

An assessment of the static accuracy of sensor measurements was conducted by
attaching two sensor nodes to the respective arms of a short-arm goniometer. Attachment
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was done using the same adhesive patches used to attach to patients’ legs. The goniometer
was oriented vertically and the bottom sensor (below knee in patient deployment) was
attached to the bottom arm. The zero degree calibration of sensor offset was done by
bringing the goniometer to the zero degree position. Measurements were made by keeping
the bottom arm vertical while the top arm/sensor (above knee in patient deployment)
was oriented at 0 (i.e., vertical), 30, 90 and 120 degrees from vertical, as measured by the
goniometer scale (1-degree resolution). This setup was placed in a stable position while
synchronized pitch and roll angles from both sensor nodes were logged for 300 s at each
position using the mobile phone app. Accuracy statistics for the calculated sensor pitch
differences are shown in Table A1 and indicate a mean absolute error of less than 0.1 degree
for the range of flexion angles tested.

Table A1. Bias statistics for each of the measured movement types.

Simulated Knee
Angle

Bias [degree]

Mean Mean Absolute Error SD

0◦ 0.18 0.02 0.02
30◦ 30.21 0.05 0.05
60◦ 60.41 0.09 0.10
90◦ 90.30 0.05 0.07
120◦ 120.80 0.02 0.02

Appendix B

A validation of the knee flexion angles obtained with the OpenPose video system
against a traditional three-dimensional surface-marker motion capture system was per-
formed by comparing measurements from the two systems. Validation was carried out
for two datasets from the 5th and 6th Grand Challenge to Predict In Vivo Knee Loads [29].
These datasets were chosen because they are open-access and contain marker motion
data with synchronized sagittal plane video. From the 5th competition, we used a trial
of the subject (male, 86 years, mass 75 kg, height 1.80 m) flexing his knee several times
through his full range of motion while standing on the contralateral leg and holding a
rail for stability. From the 6th competition, we used a trial of the subject (male, 83 years,
mass 70 kg, height 1.7 m) walking on a treadmill at his self-selected speed. Marker mo-
tion data (modified Cleveland Clinic marker set, 200 Hz frequency) was collected using
a 10-camera system (Vicon Corporation, Oxford, United Kingdom) with synchronized
sagittal plane video (720 × 480, 30 fps). Skeletal kinematics were calculated from the
marker motion data using OpenSim [30]. A model of each subject was created by scaling a
generic model [31] to match static marker data. Knee joint angles were estimated using
inverse kinematics to match marker data for the two data sets. In total, the 5th competition
contained 5 full flexion cycles and the 6th competition data contained 13 full walking
cycles. OpenPose knee angles were calculated for each video frame as the internal angle
between the hip-to-knee and ankle-to-knee vectors using custom Python 3.8 scripts. The
bias between OpenPose and marker knee angles was assessed by fitting a linear regression
model with marker measurements as a dependent variable and OpenPose measurements
as the independent variable.

The linear models had very good fits for both exercise types and the fitted slope
values were very close to one indicating that there is a good linear relationship between
the OpenPose and optical marker measurements (Figure A1). The mean bias and mean
absolute bias were <3 degrees for both exercise types (Table A2).
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Table A2. Bias statistics for each of the measured movement types.

Exercise Duration [sec]
Bias [degree]

Mean Mean Absolute Error SD

Standing knee flexion 8.24 2.64 1.78 2.28
Treadmill walk 17.65 −1.62 3.41 4.27

Figure A1. Scatter plot between three-dimensional marker tracking and OpenPose video-measured knee flexion angles
for treadmill walking. Black line corresponds to the fitted linear regression with sensor measurements as an independent
variable (y) and three-dimensional marker measurements as the dependent (x) variable. The diagonal dashed (1:1) line
indicates the equality of the two measurements.
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